catalogue * a short overview (for more details see lib) * catalogue of various ptc functions * links to plotted ptc examples Mq-functions: -------------- The mq functions are based on the principle of overlaying periodic functions with each other. They could be applied to data way up stream beforehand. data -> mq functions -> (kArmTrack5) -> ptcs -> wohlGeor functions -> output (String) -> plot experiment2 tests a more down stream approach data -> -> (kArmTrack5) -> ptcs -> MQ FUNCTIONS -> wohlGeor functions -> output (String) -> plot -- case4 -- write a destictable MQ function -- without pv functions -- import from FourierCLASSIFIERS functionalizeMQ3 n fstOsnd = F.fofourierRAW n fstOsnd [F.fopanfourier1MQ3,F.fopanfourier2MQ3,F.fopanfourier3MQ3] fun3 n fstOSnd = functionalizeMQ3 n fstOSnd ffourierMQ3 x n fstOSnd = (sin (head (map realToFrac (fun3 n fstOSnd)))*x) fourierMQ3 x n = (ffourierMQ3 x n 1) + (ffourierMQ3 x n 2) + (ffourierMQ3 x n 3) mapFour w r = (fourierMQ3 r) w tussenStap r z = last $ map (mapFour r) [1..z] fotestExp2MQ w r = (tussenStap r w) preptestExp2MQ r = map (fotestExp2MQ r ) [1..3] testExp2MQ r = map preptestExp2MQ [1..r] with pv functions ------------------------------------------- ptc -> transform MQ -> wohlGeor function -> pv1 ..pv6 -> output [String] -> plot *>let fourierMQ3 x n = show (ffourierMQ3 x n 1) + (ffourierMQ3 x n 2) + (ffourierMQ3 x n 3) ------------------------------------------- pv1: show(tussenStap 1 1) pV2: (show (tussenStap 1 1))++(show(tussenStap 1 2)) pV3: (show(tussenStap 1 2)) pV4: (show(tussenStap 1 3)) pV5: (show (tussenStap 1 3))++(show(tussenStap 1 4)) pV6: (show(tussenStap 1 4))